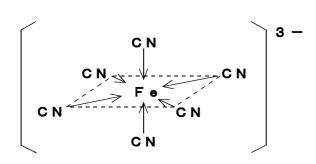

第13章 イオン平衡

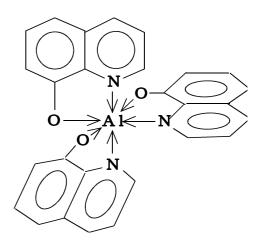
§ 1. 錯体平衡

[平衡反応]

$$N i^{2} + (aq) + 4 C N^{-}(aq) \rightleftharpoons [N i (C N)_{4}]^{2} - (aq)$$
 (1)


[平衡関係式]

$$K = \exp(-\Delta G_{r}^{*}/RT) \qquad (2)$$


$$\Delta G_{r}^{*} \equiv \mu^{*}([N i (C N)_{4}]^{2}, aq) - \{\mu^{*}(N i^{2}, aq) + 4\mu^{*}(C N, aq)\}$$
 (3)

$$K \equiv \frac{\{a([N i (CN)_{4}]^{2}, aq)\}}{\{a(N i ^{2}, aq)\}\{a(CN^{-}, aq)\}}^{4}}$$
(4)

[補足1] 錯体とは、金属イオンと何個かの配位子が「配位結合」によって結合した化合物である。

ヘキサシアノ鉄(Ⅲ)酸イオン

オキシンのアルミニウム錯体

[問1] つぎの平衡反応において,

$$N i^{2} + (aq) + 4 C N^{-}(aq) \rightleftharpoons [N I (C N)_{4}]^{2} - (aq)$$
 (A)

それぞれの化合物の化学ポテンシャルを,

$$\mu^*(N i^{2+}) = \mu^*(N i^{2+}) + R T \ln \{a(N i^{2+})\}$$
 (B)

$$\mu^*(CN^-) = \mu^*(CN^-) + RT \ln \{a(CN^-)\}$$
 (C)

$$\mu^{*}([N i (CN)_{4}]^{2}) = \mu^{*}([N i (CN)_{4}]^{2}) + R T ln \{a([N i (CN)_{4}]^{2})\}$$
 (D)

とする。 その反応の平衡定数は、次式になることを示せ。

$$\frac{\{a([N i (CN)_{4}]^{2}^{-})\}}{\{a(N i^{2}^{+})\}\{a(CN^{-})\}^{4}} = \exp\left(-\frac{\mu^{*}([N i (CN)_{4}]^{2}^{-}) - \{\mu^{*}(N i^{2}^{+}) + 4\mu^{*}(CN^{-})\}}{RT}\right)$$
(E)

[問2] つぎの反応について平衡定数を求めよ。

$$N i^{2} + (aq) + 4 C N^{-}(aq) \rightleftharpoons [N i (C N)_{4}]^{2} - (aq)$$

$$\Delta G_{\mathrm{f,298}}^{0}(\mathrm{N~i~}^{2+},\mathrm{aq}) = -4.6~\mathrm{k~J~mol}^{-1}$$

$$\Delta G_{f, 298}^{0}(CN^{-}, aq) = 172 \text{ k J mol}^{-1}$$

$$\Delta G_{\text{f, 298}}^{0}([\text{N i (C N)}_{4}]^{2}, \text{aq}) = 4.7.2 \text{ k J mol}^{-1}$$

[補足2] 各イオンは活量によって表わされている。しかしながら,低濃度では,活量は重量モル濃度に等しい。また,重量モル 濃度と容量モル濃度もほぼ等しい。したがって、この章では、「活量」と等しい量として、「容量モル濃度 [mol/L」」を使うこ とにする。

[問3] $0.01 \text{ mol} / \text{Loni}^{2+} \text{と 1 mol} / \text{Loni}^{-}$ を含む溶液がある。平衡状態での Ni^{2+} の濃度を求めよ。ただ し, $[Ni(CN)_A]^2$ 生成の平衡定数は 6.1×10^{29} である。 《 1.9×10^{-32} mol/L》

[問4] ニッケルイオン(Ni^{2+})のアンミン錯体の生成反応について、その平衡定数を求めよ。 $N i^{2} + (aq) + 6 NH_3 (aq) \rightleftharpoons [N i (NH_3)_6]^{2} + (aq)$ $\Delta~G^{0}_{\mathrm{f,}~298}$ (N i ²⁺, aq) = $-4~6~\mathrm{k}$ J mol ⁻¹

 $_{f, 298}^{0}(NH_{3}, aq) = -26.8 \text{ k J mol}^{-1}$ $\Delta G_{\rm f, 298}^{0}([{
m N~i~(NH_3)_6}]^{2+}, {
m aq}) = -2.5.6 {
m k~J~mol}^{-1}$

 (4.2×10^8) (参考: 文献値は2.0×10⁸)

[問 5] 0.01 mol / Lの N i $^{2+}$ と 1 mol / Lの N H $_3$ を含む溶液がある。平衡状態で, N i $^{2+}$ (錯体にならずに,金属 イオンの状態である)の濃度を求めよ。ただし、N i (NH $_3$) $_6$] 2 + 生成の平衡定数は $_4$. $_2$ × $_1$ $_0$ 8 で、NH $_3$ がアンモニ ウムイオン N H $_4$ + に変化する量は無視する。 《3.5×10⁻¹¹ mol / L》

[問 6] カドミウムイオン($C d^{2+}$)のアンミン錯体の生成反応について、その平衡定数を求めよ。

 $C d^{2} + (aq) + 2 NH_3 (aq) \rightleftharpoons [C d (NH_3)_2]^{2} + (aq)$

 $C d^{2} + (aq) + 4 NH_3 (aq) \rightleftharpoons [C d (NH_3)_4]^{2} + (aq)$

 $\Delta G_{\text{f, }298}^{\text{ o}}(\text{C d }^{2+},\text{aq}) = -7.7.6 \text{ k J mol}^{-1}$

 $_{f, 298}^{0}(NH_3, aq) = -26.8 \text{ k J mol}^{-1}$

 $_{\rm f, 298}^{\rm O}({\rm [C\ d\ (NH_3)_2]}^2^{+}, {\rm aq}) = -159\ {\rm k\ J\ mol}^{-1}$

 $\Delta G_{\text{f, 298}}^{\text{o}}([\text{C d (NH}_3)_4]^{2+}, \text{aq}) = -226 \text{ k J mol}^{-1}$

《 7. 4 × 1 0 4 (参考: 文献値は 6. 0 × 1 0 4), 1. 6 5 × 1 0 7 (参考: 文献値は 1. 8 2 × 1 0 7)》

[問7] $0.01 \text{ mol}/L \text{ O C d}^{2+}$ と $1 \text{ mol}/L \text{ O N H}_3$ を含む溶液がある。平衡状態で, $[\text{C d (N H}_3)_2]^{2+}$ と $[Cd(NH_3)_4]^{2+}$ のモル濃度の比を求めよ。ただし, $[Cd(NH_3)_2]^{2+}$ 生成の平衡定数は 7.4×10^4 であり, $[Cd(NH_3)_4]^{2+}$ 生成の平衡定数は 1.65×10^7 である。また、 NH_3 がアンモニウムイオン NH_4^+ に変化する量 は無視する。 $[ヒント: 平衡の状態では、溶液中の C d^{2+} のほとんどすべては [C d (N H <math>_3$) $_4$] $_4$] $_4$ となっているから、 $[NH_3] \doteq 0.96 \text{ mol} / L] \qquad \langle 1:205 \rangle$

[問8] カドミウムイオン(Cd^{2+})のシアノ錯体の生成反応について、その平衡定数を求めよ。

 $C d^{2} + (aq) + C N^{-}(aq) \rightleftharpoons [C d (C N)]^{+}(aq)$

 $C d^{2} + (aq) + 2 C N^{-}(aq) \rightleftharpoons [C d (C N)_{2}](aq)$

 $C d^{2} + (aq) + 3 C N^{-}(aq) \rightleftharpoons [C d (C N)_{3}]^{-}(aq)$

 $C d^{2} + (aq) + 4 C N^{-}(aq) \rightleftharpoons [C d (C N)_{4}]^{2} - (aq)$

 $\Delta G_{\mathrm{f,}\,298}^{\mathrm{o}}$ (C d ²⁺, aq) = -77.6 k J mol ⁻¹

 $_{f, 298}^{o}(CN^{-}, aq) = 172 \text{ k J mol}^{-1}$

 $_{f, 298}^{0}([Cd(CN)]^{+}, aq) = 60.1 k J mol^{-1}$

 $_{\rm f,\,298}^{\rm 00}({\rm [C\ d\ (C\ N)}_{\,2}),{\rm aq})=2\ 0\ 2.\ 9\ {\rm k\ J\ mol}^{\,-1}$

 $_{f, 298}^{0}([Cd(CN)_{3}]^{-}, aq) = 349.1 k J mol^{-1}$

 $\Delta G_{f, 298}^{0}([Cd(CN)_{4}]^{2-}, aq) = 508.1 k J mol^{-1}$

 $\langle (1.02 \times 10^{6}, 1.33 \times 10^{11}, 4.4 \times 10^{15}, 8.4 \times 10^{17}) \rangle$

[問9] $0.01 \text{ mol} / \text{Locd}^{2+} \text{と 1 mol} / \text{LocN}^{-}$ を含む溶液がある。

(a) 平衡状態での $[Cd(CN)]^+$, $[Cd(CN)_2]$, $[Cd(CN)_3]^-$, $[Cd(CN)_4]^{2-}$ のモル濃度を、平衡状態でのカドミウムイオンの濃度 $[Cd^{2+}]$ で表せ。ただし、平衡状態のこの溶液では, $[CN^-] \stackrel{.}{=} 0.96 \text{ mol}/L$ とする。

- (b) 溶液中の C d $^{2+}$ と 4 種類のシアノ錯体のモル濃度の合計は、最初のカドミウムイオンのモル濃度である 0.01 mol /L に等しい。平衡状態でのカドミウムイオンの濃度 [C d $^{2+}]$ を求めよ。
- (c) 4種類のシアノ錯体, $[Cd(CN)]^+$, $[Cd(CN)_2]$, $[Cd(CN)_3]^-$, $[Cd(CN)_4]^{2-}$ のモル濃度を求めよ。 《9.8×10⁵× $[Cd^{2+}]$ mol/L,1.23×10¹¹× $[Cd^{2+}]$ mol/L,3.9×10¹⁵× $[Cd^{2+}]$ mol/L,7.1×10¹⁷× $[Cd^{2+}]$ mol/L, $[Cd^{2+}]=1.4\times10^{-20}$ mol/L, $[[Cd(CN)]^+]=1.37\times10^{-13}$ mol/L, $[[Cd(CN)_2]]=1.72\times10^{-9}$ mol/L, $[[Cd(CN)_3]^-]=1.72\times10^{-9}$ mol/L, $[Cd(CN)_3]^-]=1.72\times10^{-9}$
 - 5. 5×10^{-5} mol/L, [[C d (C N)₄]²⁻] = 9. 9×10^{-3} mol/L»

§ 2. 難溶性塩の溶解平衡

[平衡反応]

 $A g C l (s) \rightleftharpoons A g + (aq) + C l - (aq)$ (5)

[問 1 0] 難溶性の塩である塩化銀の溶解平衡 A g C 1 (s) = A g $^+$ (aq) + C 1 $^-$ (aq) について,平衡反応の平衡定数 K $_{\rm sp}$ を、それぞれの物質の活量 a (A g C 1 , s) ,a (A g $^+$, aq),a (C 1 $^-$, aq)をもちいて示せ。 [ヒント:純粋な固体 の活量は "1" である。]

$$\langle \langle K_{sp} = \{ a (A g^+, aq) \} \{ a (C 1^-, aq) \} \rangle$$

[平衡関係式]

$$K_{\rm sp} = \exp(-\Delta G_{\rm r}^{*}/RT)$$
 (6)
 $\Delta G_{\rm r}^{*} \equiv \mu^{*}(A_{\rm g}^{+}, aq) + \mu^{*}(C_{1}^{-}, aq) - \mu^{*}(A_{\rm g}C_{1}, s)$ (7)
 $K_{\rm sp} \equiv \{a(A_{\rm g}^{+}, aq)\}\{a(C_{1}^{-}, aq)\}$ ($K_{\rm sp}$: 溶解度積) (8)

[問11] 難溶性塩である塩化銀(AgCl)の溶解度積を求めよ。

$$A g C 1 (s) \rightleftharpoons A g^{+}(aq) + C 1^{-}(aq)$$

$$\Delta G^{0}_{f, 298}(A g C 1, s) = -1 0 9.72 k J mol^{-1}$$

$$\Delta G^{0}_{f, 298}(A g^{+}, aq) = 7 7.111 k J mol^{-1}$$

$$\Delta G^{0}_{f, 298}(C 1^{-}, aq) = -1 3 1.17 k J mol^{-1}$$

$$\langle 1.77 \times 10^{-10} \rangle \qquad (参考: 文献値は 1.7 \times 10^{-10})$$

[問 1 2] 充分な量の塩化銀(A g C 1)の結晶を水中に入れた。溶解が平衡状態になったときの A g $^+$ の濃度を求めよ。ただし,各イオンの活量は,容量モル濃度(mol / L)による濃度に近似でき,塩化銀の溶解度積は 1 $.7 \times 10^{-10}$ である。 《 1 $.3 \times 10^{-5}$ mol / L》

[問13] 難溶性塩である臭化銀(AgBr)の溶解度積を求めよ。

$$A g B r (s) \implies A g^{+}(aq) + B r^{-}(aq)$$

$$\Delta G^{0}_{f, 298}(A g B r, s) = -95.939 k J mol^{-1}$$

$$\Delta G^{0}_{f, 298}(A g^{+}, aq) = 77.111 k J mol^{-1}$$

$$\Delta G^{0}_{f, 298}(B r^{-}, aq) = -102.82 k J mol^{-1}$$

$$(4.97 \times 10^{-13}) \qquad (参考: 文献値は 4.9 \times 10^{-13})$$

[問 14] 1.0×10^{-3} mol / L の臭化ナトリウム (N a B r)溶液に、充分な量の臭化銀(A g B r)の結晶を入れた。平衡状態になったときの A g + の濃度を求めよ。ただし、各イオンの活量は、容量モル濃度 (mol / L) による濃度に近似でき、臭化銀の溶解度積は 4.9×10^{-13} である。 《 4.9×10^{-10} mol / L》

[問15] 難溶性塩であるヨウ化銀(AgI)の溶解度積を求めよ。

AgI(s)
$$\rightleftarrows$$
 Ag⁺(aq) + I⁻(aq)
 $\Delta G_{f, 298}^{0}$ (AgI,s) = -66.32kJ mol⁻¹
 $\Delta G_{f, 298}^{0}$ (Ag⁺,aq) = 77.111kJ mol⁻¹
 $\Delta G_{f, 298}^{0}$ (I⁻,aq) = -51.67kJ mol⁻¹
(8.40×10⁻¹⁷) (参考: 文献値は8.3×10⁻¹⁷)

[問 1 6] 充分な量の塩化銀(A g C 1)とヨウ化銀(A g I)の結晶を水中に入れた。溶解が平衡状態になったときの $A g^+$, $C 1^-$, I^- の濃度を求めよ。ただし,各イオンの活量は,容量モル濃度(mol / L)による濃度に近似でき,塩化銀の溶解度積は 1.7×10^{-10} , ヨウ化銀の溶解度積は 8.3×10^{-17} である。

 $(1.3 \times 10^{-5} \text{ mol}/L, 1.3 \times 10^{-5} \text{ mol}/L, 6.4 \times 10^{-12} \text{ mol}/L)$

[問 1 7] 難溶性塩であるクロム酸銀(Ag $_2$ Cr O $_4) の溶解度積を求めよ。$

Ag 2 Cr O₄ (s)
$$\rightleftharpoons$$
 2 Ag ⁺ (aq) + Cr O₄ ^{2 -} (aq)
 $\Delta G_{f, 298}^{0}$ (Ag 2 Cr O₄, s) = -6 2 1. 6 2 k J mol ⁻¹
 $\Delta G_{f, 298}^{0}$ (Ag ⁺, aq) = 77. 1 1 1 k J mol ⁻¹
 $\Delta G_{f, 298}^{0}$ (Cr O₄ ^{2 -}, aq) = -70 6. 2 6 k J mol ⁻¹
 $\langle 6.45 \times 10^{-13} \rangle \rangle$

[問 18] $0.1 \, \text{mol} / L$ のクロム酸カリウムと $0.01 \, \text{mol} / L$ の硝酸銀を含む溶液がある。この溶液中の $A \, g^+$ の濃度を求めよ。ただし,各イオンの活量は,容量モル濃度 (mol / L) による濃度に近似でき,クロム酸銀の溶解度積は 6.5×10^{-13} である。 《 $2.6 \times 10^{-6} \, \text{mol} / L$ 》

[問19] つぎに示す難溶性塩の溶解度積を求めよ。

FeS(s)
$$\rightleftarrows$$
 Fe²⁺(aq) + S²⁻(aq)
$$\Delta G_{f,298}^{0}(\text{FeS,s}) = -100 \, \text{k J mol}^{-1}$$

$$\Delta G_{f,298}^{0}(\text{Fe}^{2+},\text{aq}) = -79 \, \text{k J mol}^{-1}$$

$$\Delta G_{f,298}^{0}(\text{S}^{2-},\text{aq}) = 86 \, \text{k J mol}^{-1}$$
 《1.8×10⁻¹⁹》 (参考: 文献値は1.0×10⁻¹⁹)

[問 2 0] 0.1 mol / L の硫酸鉄 (Fe SO $_4$)を含む p H = 4.0 の溶液がある。この溶液中では,Fe SO $_4$ は完全に Fe 2 + と SO $_4$ 2 - に解離する。

$$\text{FeSO}_4 \rightarrow \text{Fe}^{2+}(\text{aq}) + \text{SO}_4^{2-}(\text{aq})$$

この溶液に硫化水素 (H $_2$ S)を吹き込むと、硫化水素の一部は硫化物イオン(S 2 $^-$)になる。

$$H_2 S (aq) \rightleftharpoons 2 H^+ (aq) + S^2 - (aq)$$

この平衡反応により、溶液中の S² のモル濃度は 1.4×10^{-13} mol / Lである。

この溶液中に存在する Fe^{2+} イオンのモル濃度を求めよ。ただし,FeS の溶解度積は 1.8×10^{-19} で,それぞれのイオンの活量は,容量モル濃度 [mol/L] で近似できるものとする。 《 1.3×10^{-6} mol/L》

[問21] つぎに示す難溶性塩の溶解度積を求めよ。

N i S (s)
$$\rightleftharpoons$$
 N i 2 + (aq) + S 2 - (aq)
$$\Delta G_{f, 298}^{0}$$
 (N i S, s) = -80 k J mol $^{-1}$

$$\Delta G_{f, 298}^{0}$$
 (N i 2 +, aq) = -46 k J mol $^{-1}$

$$\Delta G_{f, 298}^{0}$$
 (S 2 -, aq) = 86 k J mol $^{-1}$
 $\langle 9.5 \times 10^{-2} \rangle$

[問22] 充分な量の固体の硫化ニッケル (N i S) を水に入れた。平衡状態で,N i $^{2+}$ の濃度が 0.01 mol / L以上で存在す るためには、この水溶液のpHはどれだけか。

$$N i S \rightleftharpoons N i ^{2+}(aq) + S ^{2-}(aq)$$

$$[N i^{2+}][S^{2-}] = 9.5 \times 10^{-22}$$

ただし、硫化水素(H2S)の平衡は、

$$H_2 S (aq) \rightleftharpoons 2 H^+ (aq) + S^2 - (aq)$$

$$K_a = 1.4 \times 10^{-20}$$

であり、それぞれのイオンの活量は、容量モル濃度[mol/L]で近似できるものとする。

[ヒント: Ni²⁺が 0.01 mol/Lだけ溶解するためには, [Ni²⁺][S²⁻] = 9.5×10⁻²² であるから, $[S^{2}] = 9.5 \times 10^{-20} \text{ mol} / L$ でなければならない。当初、溶解した S^{2} の濃度は 0.01 mol / Lであるから、 S^{2-} の大部分は、つぎの平衡反応によって H_2S に変わっていて、 $[H_2S] \stackrel{.}{=} 0.01$ mol / Lである。

$$H_2 S (aq) \rightleftharpoons 2 H^+ (aq) + S^2 - (aq)$$

1.4×10⁻²⁰ =
$$\frac{[H^+]^2[S^2]}{[H_2S]}$$

から H ⁺ を求める。] 《1.42》

「問23] 硫化カドミウム(CdS)の溶解度積を求めよ。

$$C d S (s) \rightleftharpoons C d^{2} + (aq) + S^{2} - (aq)$$

$$\Delta G_{f, 298}^{0}(CdS, s) = -157kJmol^{-1}$$

$$\Delta G_{\text{f, 298}}^{\text{o}}(\text{C d } 2^{+}, \text{aq}) = -7.7.6 \text{ k J mol}^{-1}$$

$$\Delta G_{\text{f, 298}}^{\text{o}}(\text{S } 2^{-}, \text{aq}) = 8.6 \text{ k J mol}^{-1}$$

$$\Lambda G^{0}(S^{2} - aq) = 8.6 \text{ k I mol}^{-1}$$

$$\langle 1.1 \times 10^{-29} \rangle$$

[問 2 4] 充分な量の固体の硫化カドミウム(C d S)を水に入れた。平衡状態において C d $^{2+}$ の濃度が 0.01 \min / L以上で 存在するために必要な \mathbf{H}^+ イオンの濃度を求めると、その濃度は実現不可能な値となる(酸を加えただけでは、 \mathbf{C} \mathbf{d} \mathbf{S} は溶解 しない)ことを確かめよ。

$$C d S \rightleftharpoons C d^{2+}(aq) + S^{2-}(aq)$$

$$K_{\rm sn} = 1.1 \times 10^{-29}$$

ただし、硫化水素 (H_2S) の平衡は、

$$H_2 S (aq) \rightleftharpoons 2 H^+ (aq) + S^2 - (aq)$$

$$K_{3} = 1.4 \times 10^{-20}$$

である。

[問25] 硫化水素 (H_2S) を含む水溶液に、硝酸 (HNO_3) を加えると、つぎに示す酸化還元反応が起こる。

$$\Delta G^0$$
, ... $(H_0 S, aq) = -2.7 \cdot 3.9 \text{ k J mol}^{-1}$

$$3 \text{ H}_2 \text{ S (aq)} + 2 \text{ NO}_3 \quad \text{(aq)} + 2 \text{ H}^+ \text{(aq)} \rightleftharpoons 3$$

$$\Delta G_{\text{f, 298}}^0 (\text{H}_2 \text{ S, aq}) = -2 \text{ 7. } 3 \text{ 9 k J mol}^{-1}$$

$$\Delta G_{\text{f, 298}}^0 (\text{NO}_3^-, \text{aq}) = -1 \text{ 1 1. } 3 \text{ k J mol}^{-1}$$

$$\Delta G_{\text{f, 298}}^0 (\text{NO, g}) = 8 \text{ 6. } 6 \text{ 8 8 k J mol}^{-1}$$

$$\Lambda G^{0}$$
 (NO g) = 86 688k I mol - 1

$$\Delta G_{\text{f, 298}}^{01, 298}(\text{NO, g}) = 86.688 \text{ k J mol}^{-1}$$
 $\Delta G_{\text{f, 298}}^{00}(\text{H }_2\text{O, 1}) = -237.192 \text{ k J mol}^{-1}$

- (a) この酸化還元反応の平衡定数を求めよ。
- (b) NO_3 (aq), H^+ (aq), NO(g) の活量がすべて"1"であるとき、 H_2S のモル濃度はどれだけか。ただし、 H_2S の活 量は、容量モル濃度[mol/L]で近似できるものとする。

(c) H
$$_2$$
 S (aq) \rightleftharpoons 2 H $^+$ (aq) + S 2 $^-$ (aq) $K_a = 1.4 \times 10^{-20}$

$$K = 1.4 \times 10^{-2}$$

の平衡反応から,S 2 のモル濃度はどれだけか。ただし,H $^+$ (aq) の活量は"1"であり,H $_2$ S の活量は,容量モル濃度 [mol/L]で近似できるものとする。

$$\langle 2.81 \times 10^{-82}, 3.3 \times 10^{-28} \text{ mol} / L, 4.6 \times 10^{-48} \text{ mol} / L \rangle$$

[問 2 6] 充分な量の固体の硫化カドミウム (C d S) を水に入れ、その溶液に更に、硝酸 (HNO $_3$) を加えた。平衡状態において C d $^{2+}$ の濃度が 0.0 1 mol / L以上で存在できること(HNO $_3$ の添加で、C d S が溶解すること)を確かめよ。

ただし、С d S の溶解平衡は,

C d S
$$\rightleftarrows$$
 C d $^{2+}$ (aq) + S $^{2-}$ (aq) $K_{\rm sp} = 1.1 \times 10^{-29}$

であり、溶液中のNO $_3$ $^-$ (aq)、H $^+$ (aq)、NO(g) の活量がすべて"1"であるとき、S 2 $^-$ のモル濃度は $4.6\times10^{-4.8}$ mol $^ ^-$ L である。

[問27] 硫化水銀(Ⅱ)(HgS)の溶解度積を求めよ。

$$H g S (s) \rightleftharpoons H g^{2+}(aq) + S^{2-}(aq)$$

$$\Delta G^{0}_{f, 298}(H g S, s) = -51 k J mol^{-1}$$

$$\Delta G^{0}_{f, 298}(H g^{2+}, aq) = 164 k J mol^{-1}$$

$$\Delta G^{0}_{f, 298}(S^{2-}, aq) = 86 k J mol^{-1}$$
 (1.8×10^{-53})

[問 2 8] 充分な量の固体の硫化水銀(II)(H g S)を水に入れ、更に、硝酸(HNO $_3$)を加えた。平衡状態において H g 2 + の 濃度が 0.01 mol / L以上では存在しないこと(HNO $_3$ の添加では、溶解できないこと)を確かめよ。

ただし、HgSの平衡定数は 1.8×10^{-53} である。また、溶液中の NO_3^- (aq)、 H^+ (aq)、NO(g) の活量がすべて" 1"であるとき、 S^{2-} のモル濃度は 4.6×10^{-48} mol / Lである。 《 3.9×10^{-6} mol / Lの濃度まで》

[問 2 9] 水銀(Π)イオン(H g 2 +)は、塩素イオンと反応して、クロロ錯体を生成する。

$$H g^{2+}(aq) + 4C1^{-} \rightleftharpoons [H g C1_4]^{2-}(aq)$$

水銀(Ⅱ)クロロ錯体の平衡定数を求めよ。

$$\Delta G_{\mathrm{f,298}}^{\mathrm{o}} (\mathrm{Hg}^{2} + \mathrm{,aq}) = 164 \, \mathrm{k \ J \ mol}^{-1}$$

$$\Delta G_{\mathrm{f,298}}^{\mathrm{o}} (\mathrm{C}^{1} - \mathrm{,aq}) = -131.17 \, \mathrm{k \ J \ mol}^{-1}$$

$$\Delta G_{\mathrm{f,298}}^{\mathrm{o}} (\mathrm{[Hg}^{2} + \mathrm{A}^{2}]^{2} - \mathrm{,aq}) = -447 \, \mathrm{k \ J \ mol}^{-1}$$

 $\langle \! \langle 1.33 \times 10^{15} \rangle \! \rangle$

[間 3 0] 充分な量の固体の硫化水銀(Π)(H g S)を水に入れた。H g S の溶解度積は 1.8×10^{-53} である。その溶液に更に、硝酸(HNO $_3$)を加えた。溶液中のNO $_3$ $^-$ (aq)、H $^+$ (aq)、NO (g) の活量がすべて"1"であるとき、S 2 $^-$ のモル濃度は 4.6×10^{-48} mol / L であるので、水溶液中に存在できる H g 2 $^+$ イオンは 3.9×10^{-6} mol / L の濃度である。もし、H g 2 $^+$ イオンが水銀(Π) クロロ錯体([H g C 1_4] 2 $^-$)に変化すれば、その分だけ更に H g S が溶解できる。 [H g C 1_4] 2 $^-$ 生成の平衡定数は 1.33×10^{15} である。水溶液中のH g 2 $^+$ イオンと[H g C 1_4] 2 $^-$ 錯体の合計濃度が 0.01 mol / Lになるための(すなわち、H g S が溶解するために必要な)C 1 $^-$ イオン濃度を求めよ。

 $\langle 1.2 \times 10^{-3} \text{ mol} / L \rangle$

[補足3] 硫化物難溶性塩の溶解法を、溶解度積の大きさ別に、その例を示す。

N i S (s) 9.5×10⁻²² 強酸(酸の作用)の添加(pH=1.42)

C~d~S~(s) 1.1×10 $^{-2~9}$ 強酸(酸の作用)と硝酸(酸化反応)の添加

HgS(s) 1.8×10 $^{-53}$ 強酸(酸の作用)と硝酸(酸化反応),塩酸(錯体生成の効果)の添加