11. 電子常磁性共鳴分析法(electron paramagnetic resonance)

[1] 電子常磁性共鳴

電子スピン共鳴 (electron spin resonance, ESR)

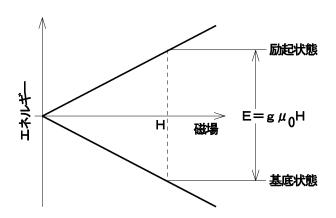


図1. 磁場による不対電子のエネルギーの変化

[間 1] $_{\mu_{\,0}}$ は $\frac{e\,h}{4\,\pi\,m_{\,\mathrm{e}}}$ で定義される量(参考図書の $(6\cdot2)$ 式は誤り)である。e は 電子の電荷,h は プランク定数, $m_{\,\mathrm{e}}$ は電子の質量である。g は比例定数で,下表の値を持っている。

磁場 0.34T (3400 gauss) の下で、それぞれのラジカルが吸収する電磁波の周波数を求めよ。

メチルラジカル	2.00255
エチルラジカル ビニルラジカル	2.00260 2.00220
アリルラジカル	2.00254
ベンゼンラジカルアニオン ナフタレンラジカルアニオン	2.00276 2.00263
アントラセンラジカルカチオン	2.00249
アントラセンラジカルアニオン	2.00266

《メチルラジカル: 9.5296GHz, ベンゼンラジカルアニオン: 9.5306GHz》

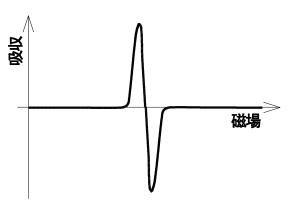
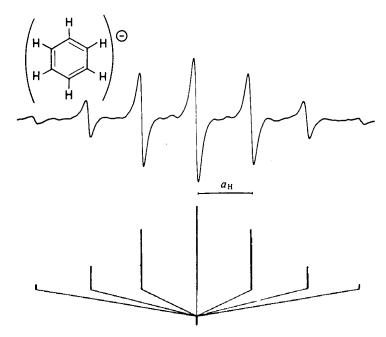



図2. 吸収曲線(微分形)

[2] 超微細分裂

スピンースピン結合

図3. ベンゼンラジカルアニオンのEPRスペクトル (吸収強度比 左から 1:6:15:20:15:6:1)

表 1. 超微細分裂定数

遊離基	遊離基 超微細分裂定数		[ガウス]	
CH ₃ · CH ₃ CH ₂ · CH ₃ CH ₂ CH ₂ · (CH ₃) ₂ CH · (CH ₃) ₃ C ·	23.04 22.38(α) 22.08(α) 22.11(α)	26.87(β) 33.2(β) 24.68(β) 22.72(β)	0.38(γ)	
ベンゼン: ベンゼン:	2.89 3.75			
ピラジン: ピラジン:	7.6(a _N) 7.1(a _N)	3.26(a _H) 2.6(a _H)		
3 2 -CH ₃ -	5.12(2)	4.45(3).	0.59(4)	0.79(CH ₃)
$4\sqrt{\frac{3}{NO_2}}$	9.70(a _N)	3.36(2)	1.07(3)	4.03(4)
CH_3O \longrightarrow NO_2^{-1}	14.35(a _N)	3.40(2)	1.05(3)	
$F \longrightarrow \begin{array}{c} 3 & 2 & O \\ & \parallel & \\ & -CCH_3 \end{array}$	3.78(a _F)	1.62(2)	0.54(3)	3.43(CH ₃)
†	4.90(1)	1.83(2)		
-	4.95(1)	1.87(2)		

[3] スペクトル

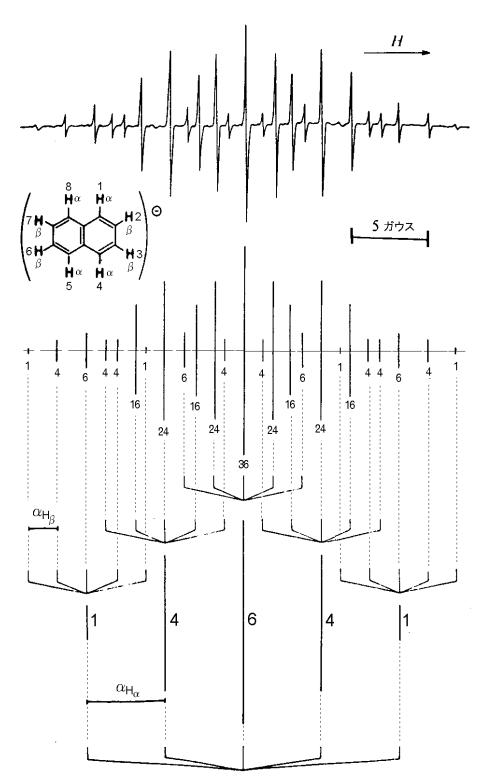


図4. ナフタレンラジカルアニオンのEPRスペクトル

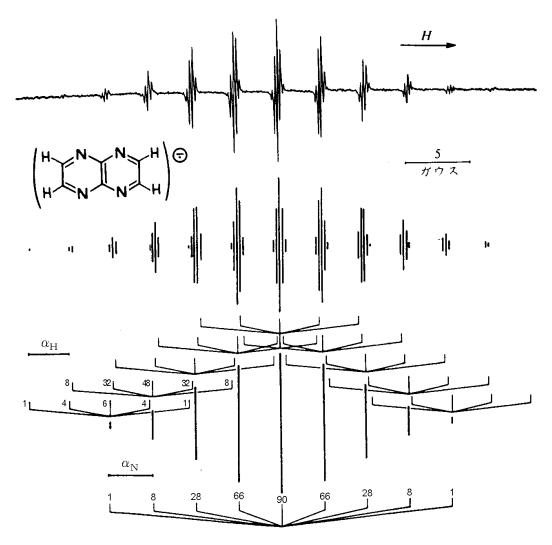


図5. 1,4,5,8ーテトラアザナフタレンラジカルアニオンのEPRスペクトル

[間2] 1,4,5,8 — テトラアザナフタレンラジカルアニオンのEPRスペクトルにおいて、それぞれの吸収強度比を示せ。

[問3] つぎのラジカルのEPRスペクトルを描け。

ただし, () 内にそれぞれのラジカルの超微細分裂定数を示す。

a) TF μ PS μ $\text{CH}_{2}(\alpha)$ $\text{CH}_{3}(\beta)$

 $(\alpha:22.38, \beta:26.87)$

b) $\mathcal{C}_{2}(\alpha) CH_{2}(\beta) CH_{3}(\gamma)$

 $(\alpha:22.08, \beta:3\overline{3}.2, \gamma:0.38)$

c) $i-\mathcal{I}$ ロピルラジカル • CH(α)(CH₃(β))₂

 $(\alpha:22.11, \beta:24.68)$

 $(\beta:22.72)$

e) トルエンラジカルアニオン

 $(2:5.12, 3:4.4, 4:0.59, CH_3:0.79)$

f) ニトロベンゼンラジカルアニオン

(2:3.36, 3:1.07, 4:4.03, N:9.70)

[4]参考図書

(1)D. J. Pasto, C. R. Johnson (平田 義正 他) 「有機化合物の構造決定法」東京化学同人, 1980, p209